Lesson 6.....Methods of the Math Class

One of the most useful methods of the Math class is sqrt() ...which means square root. For example, if we want to take the square root of 17 and store the result in p, do the following:

$$
\text { double } p=\text { Math.sqrt(17); }
$$

Notice that we must store the result in a double p in this case. We must store in a double since square roots usually don't come out even.

Signature of a method:

Below we will give the description of some methods of the Math class... along with the signatures of the method. First, however, let's explain the meaning of signature (also called a method declaration). Consider the signature of the sqrt() method:

Method	Signature \quad Description abs	Returns the absolute value of x double abs(double x)
abs	double pow(double b, double e)	Returns the absolute value of x
pow	Returns b raised to the e power	
sqrt	double sqrt(double x)	Returns the square root of x
ceil	double ceil(double x)	Returns next highest whole number from x
floor	double floor(double x)	Returns next lowest whole number from x
\min	double min(double a, double b)	Returns the smaller of a and b
\max	double max (double a, double b)	Returns the larger of a and b
\min	int $\min ($ int a, int $b)$	Returns the smaller of a and b
\max	int $\max ($ int a, int $b)$	Returns the larger of a and b

(For both \min and max there are also versions that both accept and return types float, short, and long. See Appendix C for more on these three data types.)
random double random() Returns a random double (range $0 \leq \mathrm{r}<1$)
round long round(double x) Returns x rounded to nearest whole number

PI double PI Returns 3.14159625....
Now, we offer examples of each (most of these you can do on a calculator for verification):

1. double d=-379.22;

System.out.println(Math.abs(d)); //379.22
2. double b=42.01;
double e = 3.728;
System.out.println (Math.pow(b, e)); //1126831.027
3. double d = 2034.56;

System.out.println(Math.sqrt(d)); //45.10609715
4. double d=1.4;

System.out.println(Math.ceil(d)); //2.0
5. double $\mathrm{d}=-1.6$;

System.out.println(Math.ceil(d)); //-1.0
6. double d=1.4;

System.out.println(Math.floor(d)); //1.0
7. double d=-1.6;

System.out.println(Math.floor(d)); //-2.0
The last four examples illustrating floor and ceiling are best understood with the following drawing:

Figure 6-1 Relationship of ceiling and floor

Just think of the ceiling as it is in a house... on top. Likewise, think of the floor as being on the bottom.

Therefore, Math.ceil(-1.6) being -1 makes perfect sense since -1 is above. Similarly, -2 is below -1.6 so it makes sense to say that -2 is Math.floor (-1.6).
8. double $\mathrm{d}=7.89$;

System.out.println(Math. $\log (\mathrm{d})$); //2.065596135 ...log is base e.
9. double $\mathrm{x}=2038.5$;
double $y=-8999.0$;
System.out.println(Math.min(x,y)); //-8999.0
10. double $x=2038.5$;
double y = -8999.0;
System.out.println(Math.max(x,y)); //2038.5
11. double $x=148.2$;

System.out.println(Math.round(x)); //148
double $\mathrm{x}=148.7$;
System.out.println(Math.round(x)); //149
double $\mathrm{x}=-148.2$;
System.out.println(Math.round(x)); //-148
double $\mathrm{x}=-148.7$;
System.out.println(Math.round(x)); //-149
12. System.out.println(Math.PI); //3.14159265...

Advanced Math methods:

Below are some additional Math methods that advanced math students will find useful:

Method	Signature Description	
\log	double \log (double x)	Returns log base e of x
sin	double sin(double a)	Returns the sine of angle a... a is in rad
cos	double \cos (double a)	Returns the cosine of angle $\mathrm{a} . . . \mathrm{a}$ is in rad
\tan	double \tan (double a)	Returns the tangent of angle $\mathrm{a} . . . \mathrm{a}$ is in rad
asin	double asin(double x)	Returns arcsine of x .. . in range - $\mathrm{PI} / 2$ to $\mathrm{PI} / 2$
os	double acos(double x)	Returns arccosine of x ... in range 0 to PI
an	double atan(double x)	Returns arctan of x . in range - $\mathrm{PI} / 2$ to $\mathrm{PI} / 2$
toDegrees	double toDegrees(double angRad)	Converts radians into degrees
toRadians	double toRadians(double angDeg)	Converts degrees into radians

Exercise on Lesson 6

1. Write code that will take the square root of x and store the result in y.
2. Write code that will multiply the value of the integer j times the absolute value of the integer m and then store the result in the integer k.
3. Is the following legal? If not, what would you do to make it legal?

$$
\text { int } \mathrm{k}=\text { Math.abs(-127.5); }
$$

4. Write a statement that will print the result of $2^{1.5}$.
5. System.out.println(Math.ceil(-157.2));
6. System.out.println(Math.floor(-157.2));
7. System.out.println(Math.ceil(157.2));
8. System.out.println(Math.floor(157.2));
9. System.out.println(Math.round(-157.2));
10. System.out.println(Math.ceil(-157.7));
11. System.out.println(Math.ceil(157));
12. System.out.println(Math.ceil(157.7));
13. Write a statement that will print the natural \log of $18 \ldots$ same as $\ln (18)$ on a calculator.
14. Write a line of code that multiplies double p times π and stores the result in b.

Project... Compute This

Create a new project called ComputeThis having a class called Tester. The main method of Tester should calculate the value of the following formulas and present the answers as shown.

$$
\begin{array}{ll}
\mathrm{d} 1=3 \pi \sin \left(187^{\circ}\right)+\left|\cos \left(122^{\circ}\right)\right| & \begin{array}{l}
\text {.. Remember that the arguments of sin and cos must } \\
\text { be in radians. }
\end{array} \\
\mathrm{d} 2=(14.72)^{3.801}+\ln 72 & \ldots \text { ln means log base e }
\end{array}
$$

The output of your code should appear as follows:

$$
\begin{aligned}
& d 1=-0.618672237585067 \\
& d 2=27496.988867001543
\end{aligned}
$$

Verify these answers with a calculator.

