5-1
Lesson 5.....Mixed Data Types, Casting, and Constants

So far we have looked mostly at simple cases in which all the numbers involved in a
calculation were either all integers or all doubles. Here, we will see what happens when we
mix these types in calculations.

Java doesn’t like to lose data:
Here is an important principle to remember: Java will not normally store information in a
variable if in doing so it would lose information. Consider the following two examples:

1. An example of when we would lose information:

double d =29.78;
int i=d; //won’t compile since i is an integer and it would have to chop-off
// the .78 and store just 29 in i....thus, it would lose information.

There is a way to make the above code work. We can force compilation and
therefore result in 29.78 being “stored” in 7 as follows (actually, just 29 is stored
since i can only hold integers):

int 1= (int)d; //(int) “casts” d as an integer... It converts d to integer form.
2. An example of when we would not lose information:

intj = 105;
double d = j; //legal, because no information is lost in storing 105 in the
// double variable d.

The most precise:
In a math operation involving two different data types, the result is given in terms of the
more precise of those two types...as in the following example:

nti=4;
double d = 3;
double ans = 1/d; //ans will be 1.33333333333333...the result is double precision

20 + 5 * 6.0 returns a double. The 6.0 might look like an integer to us, but
because it’s written with a decimal point, it is considered to be a floating point

number...a double.

Some challenging examples:
What does 3 +5.0/2+5*2—-3 return? 12.5

What does 3.0 +5/2+5*2 -3 return? 12.0
What does (int)(3.0 +4)/(1 +4.0) *2 -3 return? -.2
Don’t be fooled:

Consider the following two examples that are very similar...but have different
answers:

5-2
double d = (double)5/4; //same as 5.0 / 4...(double) only applies to the 5
System.out.println(d); //1.25

intj=35;

intk =4;

double d = (double)(j / k); //(j / k) is in its own little “world” and performs
//integer division yielding 1 which is then cast as
//a double, 1.0

System.out.println(d); //1.0

Constants:
Constants follow all the rules of variables; however, once initialized, they cannot be
changed. Use the keyword final to indicate a constant. Conventionally, constant
names have all capital letters. The rules for legal constant names are the same as for
variable names. Following is an example of a constant:

final double PI=3.14159;
The following illustrates that constants can’t be changed:

final double PI =3.14159;
PI=3.7789; //illegal

When in a method, constants may be initialized after they are declared.

final double PI; //legal
PI=3.14159;

Constants can also be of type String, int and other types.

final String NAME= “Peewee Herman”;
final int LUNCH_COUNT = 122;

The real truth about compound operators:
In the previous lesson we learned that the compound operator expression j+= x, was
equivalent fo j = j + x;. Actually, for all compound operators there is also an
implied cast to the type of j. For example, if j is of type int, the real meaning of
Jj+=x; is:
j = (nt)(+ x);

Project... Mixed Results

Create a new project called MixedResults with a class called Tester. Within the main method
of Tester you will eventually printout the result of the following problems. However, you
should first calculate by hand what you expect the answers to be. For example, in the
parenthesis of the first problem, you should realize that strictly integer arithmetic is taking
place that results in a value of 0 for the parenthesis.

double d1 =37.9; //Initialize these variables at the top of your program
double d2 = 1004.128;

intil =12;

inti2 = 18;

5-3

Problem 1: 57.2 * (il /i2) +1

Problem 2: 57.2 * ((double)il /i2) +1
Problem 3: 15—il *(dl *3)+4
Problem 4: 15 —1l * (int)(d1 * 3) + 4
Problem 5: 15 —il * ((int)dl *3)+4

Your printout should look like the following:

Problem 1: 1.0

Problem 2: 39.13333333333333
Problem 3: -1345.39999999999
Problem 4: -1337

Problem 5: -1313

Exercise on Lesson 5
Unless otherwise instructed in the following problems, state what gets printed.

1. Write code that will create a constant E that’s equal to 2.718.

2. Write the simplest type constant that sets the number of students, NUM_STUDENTS,
to 236.

3. What’s wrong, if anything, with the following code in the main method?
final double Area;
Area =203.49;

4. intcnt=27.2;
System.out.println(cnt);
What’s printed?

5. double d =78.1;
int fg = (int)d,
System.out.println(fg);
What’s printed?

6. Is double f4 = 22; legal?
7. The following code stores a 20 in the variable j:
double j = 61/3;

What small change can you make to this single line of code to make it produce the
“real” answer to the division?

8. System.out.println((double)(90/9));

9.

10.

11.

System.out.println(4 + 6.0/4 + 5 * 3 — 3);

intp=3;

double d =10.3;

int j = (int)5.9;

System.out.println(p + p * d — 3 *j);

intp=3;

double d = 10.3;

int j = (int)5.9;

System.out.println(p + p * (int)d — 3 * j);

The following code applies to 12 — 15:

12.

13.

14.

15.

16.

17.

18.

int dividend = 12, divisor = 4, quotient = 0, remainder = 0;
int dividend2 = 13, divisor2 = 3, quotient2 = 0, remainder2 = 0;
quotient = dividend/divisor;
remainder = dividend % divisor;
quotient2 = dividend?2 / divisor2;
remainder2 = dividend2 % divisor2;
System.out.println(quotient);
System.out.println(remainder);
System.out.println(quotient2);
System.out.println(remainder2);
Write a line of code in which you divide the double precision number d by an integer
variable called i. Type cast the double so that strictly integer division is done. Store
the result in j, an integer.
Suppose we have a line of code that says
final String M = “ugg”;
Later in the same program, would it be permissible to say the following?
M — “WOW”;
Is the following code legal? If so, what is printed? If not, why?
intk="7;

k*=.5;
System.out.println(k);

