
15-1

A is like a cookie cutter and the “cookies” it produces are the :
 One cookie cutter…………………..many possible cookies.
 One ………………………...…many possible .

Let’s build a class and begin to understand its parts. Our class will be called . When
we create one of our objects (just like creating a cookie), we will want to specify
the radius of each circle. We will want to have the ability to interrogate the various
objects we might have created and ask for the area, circumference, or diameter.

 public class Circle
 {
 //This part is called the and lets us specify the radius of a
 //particular circle.
 public Circle(double r)
 {
 radius = r;
 }

 //This is a . It performs some action (in this case it calculates the
 //area of the circle and returns it.
 public double area() //
 {
 double a = Math.PI * radius * radius;
 return a;

}

public double circumference() //
{
 double c = 2 * Math.PI * radius;
 return c;
}

 public double radius; //This is a …also called
 // and It is available to code

// in ALL the methods in this class.
 }

Now, let’s use our cookie cutter (the class) to create two cookies (objects).
Place the following code in the method of a different class ().

 Circle cir1 = new Circle(5.1);
 Circle cir2 = new Circle(20.6);

With a cookie-cutter we say we a cookie. With a class we an object.
So, we just instantiated an object called having a radius of 5.1 and another object

15-2
called having a radius of 20.6…. From this point on we don’t refer to . Instead
we refer to and .

Let’s suppose we wish to store the radius of in a variable called .
Here’s the code to do this:

 double xx = cir1.radius;

Now let’s ask for and printout the area of :

 System.out.println (cir2.area());

We will now look at the (also called a) of this
method and then examine each part.

 public double area() //this is the

The word gives us access from outside the class. Notice above
that we used and this code was in some other class…so “public”
lets us have access to the method from the outside world. It is also
possible to use the word here. (more on this later)… Strictly speaking,

 and are not officially part of the signature; however, since they
generally always preface the actual signature, we will consider them part of
the signature for the remainder of this book.

The word above tells us what type variable is returned. When we issue
the statement , what do we expect to be
“returned” from the call to the method? The answer is that we expect a
double precision number since the area calculation may very well yield a
decimal fraction result.

The word as part of the signature above is the name of the method and
could be any name you like…even your dog’s name. However, it is wise not
to use cute names. Rather, use names that are suggestive of the action this
method performs.

Notice all our methods begin with a small letter. This is not a hard-and-fast
rule; however, it is conventional for variables and objects to begin with lower
case letters.

The parenthesis that follows the name of the method normally will contain
parameters. So far, in our circle class none of the methods have parameters so
the parenthesis are all empty; however, the parenthesis must still be there.

15-3
Let’s create a new method in which the parenthesis is empty. Our new
method will be called . The purpose of this is so that after the object
has been created (at which time a radius is initially set), we can change our
mind and establish a radius for this particular circle. The new signature
(and code) will be as follows:

 public void setRadius(double nr)
 {
 radius = nr; //set the state variable radius to the new radius

} //value, nr

 We see two new things here:
a. means we are returning a value from this method. Notice

there is no in the code as with the other methods.

b. means the method expects us to send it a and that it
will be called within the code of this method. is called a

.

Here is how we would call this method from within some other class:

 cir2.setRadius(40.1); //set the radius of cir2 to 40.1

40.1 is called an . The terms arguments and parameters are
often carelessly interchanged; however, the correct usage of both has
been presented here.

Notice that there is no equal sign in the above call to . This is
because it’s void (returns nothing)… therefore, we need not assign it to
anything.

Have you noticed another way we could change the radius?
 cir2.radius = 40.1; //We store directly into the public instance field.

At this point we are capable of understanding three things that have remained mysterious
up to now. Consider the line of code that’s a part of all our programs:

 public static void main(String args[])

1. is the name of this special

2. gives us access to this method from outside its class

3. indicates that this method doesn’t return anything

The other parts will have to remain a mystery for now.

Next, we will look at the constructor for the class.

15-4
public Circle(double r)

 {
 radius = r;
 }

The entire purpose of the constructor is to set values for some of the state variables of an
object at the time of its creation (construction). In our class we set the value of the
state variable, , according to a double precision number that is passed to the
constructor as a parameter. The parameter is called within the constructor method;
however, it could be given any legal variable name.

The constructor is itself a method; albeit a very special one with slightly different rules
from ordinary methods.

1. is always specified.

2. The name of the constructor method is always the as the name of the class.

3. This is actually a void method (since it doesn’t return anything); however, the
 specifier is omitted.

4. The required parenthesis may or may not have parameters. Our example above

does. Following is another example of a constructor with parameters. A
constructor with no parameters is called the .

public Circle()
{
 radius =100;
}

What this constructor does is to just blindly set the radii to 100 of all
objects that it creates.

Create a new method for the class called . Add this method to the class
described on page 15-1. It should return a that is the diameter of the circle. No parameters
are passed to this method.

In a class, test the performance of your new method as follows:
(Your project should have two classes, and)

public class Tester
{
 public static void main(String args[])
 {
 Circle cir1 = new Circle(35.5);
 System.out.println(cir1.diameter()); // should give 71.0 as the answer.

}
}

Exercise on Lesson 15

 Rectangle

 Lunch

Lunch yummy5

 School

main Tester

a.
b.
c.

 BibleStory

 BibleStory

 BibleStory

 philistine BibleStory

String double

 gravy BibleStory
var2 gravy

 BibleStory sss
bart

 bart BibleStory
<#1> sss jj

<#1>

 Trail x y
s String String

s x y
met String

x* y

 public double peachyDandy(int z)

zippo
main Tester

peachyDandy

double hamburger = zippo.peachyDandy(127.31);

Project … Overdrawn at the Bank

BankAccount

double balance
String name

 double

balance

 String name

 deposit double

balance

 withdraw double
balance

balance

Tester main()

 BankAccount myAccount

 deposit

 balance

 withdraw

 balance

The Sally Jones account balance is, $1405.22

