15-1
Lesson 15.....Classes and Objects

A class is like a cookie cutter and the “cookies” it produces are the objects:
One cookie cutter....................... many possible cookies.
Oneclass................ooovviiiniinn... many possible objects.

Building a Circle class:
Let’s build a class and begin to understand its parts. Our class will be called Circle. When
we create one of our Circle objects (just like creating a cookie), we will want to specify
the radius of each circle. We will want to have the ability to interrogate the various Circle
objects we might have created and ask for the area, circumference, or diameter.

public class Circle

{
//This part is called the constructor and lets us specify the radius of a
//particular circle.
public Circle(double r)

{
}

radius =r;

//This is a method. It performs some action (in this case it calculates the
//area of the circle and returns it.
public double area() //area method
{
double a = Math.PI * radius * radius;
return a;

}

public double circumference() //circumference method

{
double ¢ =2 * Math.PI * radius;

return c;

}

public double radius; //This is a State Variable...also called Instance
//Field and Data Member. It is available to code
//'in ALL the methods in this class.

}

Instantiating an object:
Now, let’s use our cookie cutter (the Circle class) to create two cookies (Circle objects).
Place the following code in the main method of a different class (7ester).

Circle cirl = new Circle(5.1);
Circle cir2 = new Circle(20.6);

With a cookie-cutter we say we create a cookie. With a class we instantiate an object.
So, we just instantiated an object called cir/ having a radius of 5.1 and another object

15-2
called cir2 having a radius of 20.6.... From this point on we don’t refer to Circle. Instead
we refer to cirl and cir2.

Let’s suppose we wish to store the radius of cir/ in a variable called xx.
Here’s the code to do this:

double xx = cirl.radius;
Now let’s ask for and printout the area of cir2:
System.out.println (cir2.area());

A closer look at methods:
We will now look at the signature (also called a method declaration) of this area
method and then examine each part.

public double area() //this is the signature

Access control (public, private, etc.):
The word public gives us access from outside the Circle class. Notice above
that we used cir2.area() and this code was in some other class...so “public”
lets us have access to the area() method from the outside world. It is also
possible to use the word private here. (more on this later)... Strictly speaking,
public and private are not officially part of the signature; however, since they
generally always preface the actual signature, we will consider them part of
the signature for the remainder of this book.

Returned data type (double, int, String, etc):
The word double above tells us what type variable is returned. When we issue
the statement System.out.printin(cir2.area());, what do we expect to be
“returned” from the call to the area method? The answer is that we expect a
double precision number since the area calculation may very well yield a
decimal fraction result.

Method name:
The word area as part of the signature above is the name of the method and
could be any name you like...even your dog’s name. However, it is wise not
to use cute names. Rather, use names that are suggestive of the action this
method performs.

Naming convention:
Notice all our methods begin with a small letter. This is not a hard-and-fast
rule; however, it is conventional for variables and objects to begin with lower
case letters.

Parameters:
The parenthesis that follows the name of the method normally will contain
parameters. So far, in our circle class none of the methods have parameters so
the parenthesis are all empty; however, the parenthesis must still be there.

15-3
Let’s create a new method in which the parenthesis is not empty. Our new
method will be called setRadius. The purpose of this is so that after the object
has been created (at which time a radius is initially set), we can change our
mind and establish a new radius for this particular circle. The new signature
(and code) will be as follows:

public void setRadius(double nr)

{
radius = nr; //set the state variable radius to the new radius
} //value, nr

We see two new things here:

a. void means we are not returning a value from this method. Notice
there is no return in the code as with the other methods.

b. double nr means the method expects us to send it a double and that it
will be called nr within the code of this method. nr is called a
parameter.

Here is how we would call this method from within some other class:
cir2.setRadius(40.1); //set the radius of cir2 to 40.1

40.1 is called an argument. The terms arguments and parameters are

often carelessly interchanged; however, the correct usage of both has

been presented here.

Notice that there is no equal sign in the above call to setRadius. This is

because it’s void (returns nothing)... therefore, we need not assign it to

anything.

Have you noticed another way we could change the radius?
cir2.radius = 40.1; //We store directly into the public instance field.

Understanding main:
At this point we are capable of understanding three things that have remained mysterious
up to now. Consider the line of code that’s a part of all our programs:
public static void main(String args|[])
1. main is the name of this special method
2. public gives us access to this method from outside its class
3. void indicates that this method doesn’t return anything

The other parts will have to remain a mystery for now.

The constructor:
Next, we will look at the constructor for the Circle class.

15-4
public Circle(double r)
{

}

radius =r;

The entire purpose of the constructor is to set values for some of the state variables of an
object at the time of its creation (construction). In our Circle class we set the value of the
state variable, radius, according to a double precision number that is passed to the
constructor as a parameter. The parameter is called » within the constructor method;
however, it could be given any legal variable name.

The constructor is itself a method; albeit a very special one with slightly different rules
from ordinary methods.

1.

2.

public is always specified.

The name of the constructor method is always the same as the name of the class.

. This is actually a void method (since it doesn’t return anything); however, the

void specifier is omitted.

The required parenthesis may or may not have parameters. Our example above
does. Following is another example of a Circle constructor with no parameters. A
constructor with no parameters is called the default constructor.

public Circle()

{
}

What this constructor does is to just blindly set the radii to 100 of all Circle
objects that it creates.

radius =100;

Project... What’s That Diameter?

Create a new method for the Circle class called diameter. Add this method to the Circle class
described on page 15-1. It should return a double that is the diameter of the circle. No parameters
are passed to this method.

In a Tester class, test the performance of your new diameter method as follows:
(Your project should have two classes, Tester and Circle.)

public class Tester

{

public static void main(String args|[])

{

Circle cirl = new Circle(35.5);
System.out.println(cirl.diameter()); // should give 71.0 as the answer.

15-5

Exercise on Lesson 15

1.

10.

double length = 44.0;
int width =13;
Rectangle myRect = new Rectangle(length, width);
a. Identify the class
b. Identify the object
c. What type of parameter(s) are passed to the constructor?

Write out the signature for the constructor of the Rectangle class from #1 above.

Suppose a constructor for the Lunch class is as follows:
public Lunch(boolean diet, int cal)
{
diet yes no = diet;
calories = cal,

}

Write appropriate code that will create a Lunch object called yummy5. Tell the
constructor that, yes, you are on a diet, and the number of calories should be 900.

BankAccount account39 = new BankAccount(500.43);
a. Identify the class
b. Identify the object
c. What type of parameter(s) are passed to the constructor?

A class is like a . An object is like a .
Fill in the blanks above using the word “cookie” and “cookie cutter”.

What’s wrong (if anything) with the following constructor for the School class?
public void school(int d, String m)
{ ...somecode... }

Which of the following is a correct association?
a. One class, many objects
b. One object, many classes

Which must exist first?
a. The class
b. The object

Is the following legal? If not, why?

//Constructor //This code is in main of Tester class
public House(int j, boolean k) intp=3,q=9;

{ ...somecode... } House myHouse = new House(p, q);
//Constructor

public Band(int numMembers, int numInstruments, String director, double amount)
{ ...code...}

Band ourBnd = new Band(mem, instrmnts, “Mr. Perkins”, budget);

15-6
What should be the data types of:
a. mem
b. instrmnts
c. budget

sk sk st sk s sk ok sk sk sk sk sk sk s s sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk sk sk s sk sk sk sk sk sk sk sk s s sk sk sk ki sk sk skoskoskoskokok

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

public class BibleStory

{

public int varl;

public double var2;

public String sss;

public void Samson(double zorro) { ...some code...}

public String getDelilah() { ...some code...}

public BibleStory(String x, int y, double z) { ...some code... }
}

From the BibleStory class above, write the signature of the constructor.
From the BibleStory class above, what is/are the instance field(s).
From the BibleStory class above, write the signature(s) of the all the method(s).

Write code that instantiates an object called philistine from the BibleStory class. Pass
the following parameters to the constructor:
The integer should be 19, the String “Ralph”, and the double 24.18.

Assume an object called gravy has been created from the BibleStory class. Write code
that will set the state variable var2 to 106.9 for the gravy object.

Write code that will print the value of the BibleStory data member, sss. Assume you
have already created an object called bart.

Again, assume we have an object called bart instantiated from the BibleStory class.
What should you fill in for <#1> below in order that sss be stored in the variable jj?
<#1> jj = bart.sss;

Create a class called Trail. It should have instance fields x and y that are integers.
Instance field s should be a String. The constructor should receive a String which is
used to initialize s. The constructor should automatically set x and y both equal to 10.
There should be a method called met that returns a String that is the hex equivalent of
x* y. This method receives no parameters.

Consider a method whose signature is: public double peachyDandy(int z)
Write code that would call this method (assume we have an object name zippo). Also
assume that this code will be placed in the main method of a Tester class and that the

peachyDandy method is in some other class.

Refer to the information in 19 above. What’s wrong with trying to call this method in
the following fashion? double hamburger = zippo.peachyDandy(127.31);

15-7

Project ... Overdrawn at the Bank
Create a class called BankAccount. It should have the following properties:
1. Two state variables:

double balance... This is how much money is currently in the account.
String name... The name of the person owning the account.

2. Constructor should accept two parameters.
a. One should be a double variable that is used to initialize the state variable,
balance.

b. The other should be a String that is used to initialize the state variable, name.

3. Two methods:
a. deposit...returns nothing...accepts a double that is the amount of money being
deposited. It is added to the balance to produce a new balance.

b. withdraw...returns nothing...accepts a double that is the amount of money
being taken out of the account. It is subtracted from the balance to produce a
new balance.

Create a Tester class that has a main() method. In that method you should input from the
keyboard the amount (1000) of money initially to be put into the account (via the constructor)
along with the name of the person to whom the account belongs.

1. Use these two pieces of data to create a new BankAccount object called myAccount.

2. Call the deposit method to deposit $505.22.

3. Print the balance state variable.

4. Call the withdraw method to withdraw $100.

5. Print the remaining balance in this form:

The Sally Jones account balance is, $1405.22

