
11-1

One of the most important structures in Java is the “ -loop”. A loop is basically a block of code
that is with certain rules about how to start and how to end the process.

Suppose we want to sum up all the integers from 3 to 79. One of the statements that will
help us do this is:

 sum = sum + j;

However, this only works if we repeatedly execute this line of code, …first with ,
then with , …and finally with . The full structure of the -loop that
will do this is:

 int j = 0, sum = 0;
 for (j = 3; j <= 79; j++)
 {

sum = sum + j;
System.out.println(sum); //Show the progress as we iterate thru the loop.

 }

 System.out.println(“The final sum is ” + sum); // prints 3157

Now let’s examine the three parts in the parenthesis of the -loop.

…. If we had wanted to start summing at 19, this part
would have read, .

…. We continue looping as long as this

expression . In general this expression can be expression. For
example, it could be:

count = = 3 s + 1 < alphB s > m +19 etc.

 There is something really bad that can happen here. You must write
your code so as to insure that this control statement will eventually become ,
thus causing the loop to terminate. Otherwise you will have an endless loop which
is about the worst thing there is in programming.

… ++ This tells us how our variable changes as we proceed

through the loop. In this case we are incrementing each time; however, other
possibilities are:

j-- j = j + 4 j = j * 3 etc.

For our example above, exactly when does the increment … ++ occur? Think of
the step expression being at the bottom of the loop as follows:

11-2

for (j = 3; j <= 79; . . .)

 {
 … some code …

 j++; //Just think of the j++ as being the last line of code inside the
 } //braces.

If the keyword is executed inside a -loop, the loop is immediately exited
(regardless of the control statement). Execution continues with the statement
immediately following the closing brace of the -loop.

It is possible to declare the loop variable in the initializing portion of the
parenthesis of a -loop as follows:
 for (j = 3; j <= 79; j++)
 {

 }

In this case the of is confined to the interior of the loop. If we write in
statement outside the loop (without redeclaring it to be an), it won’t compile.
The same is true of any other variable declared inside the loop. Its scope is limited
to the interior of the loop and is not recognized outside the loop as is illustrated in
the following code:

 for (j = 3; j <= 79; j++)
 {
 double d = 102.34;

}
System.out.println(d); //won’t compile because of this line

If there is only or just one basic structure (an -structure or
another loop) inside a loop, then the braces are unnecessary. In this case it is still
correct (and highly recommended) to still have the braces…but you leave
them off.

 for (j = 3; j <= 79; j++) is equivalent to for (j = 3; j <= 79; j++)
 sum = sum + j; { sum = sum + j; }

It is often useful to know what the loop variable is after the loop finishes:

11-3

 for (j = 3; j <= 79; j++)
 {
 some code
 }
 System.out.println(j); //

On the last iteration of the loop, increments up to 80 and this is when the control
statement finally is . Thus, the loop is exited.

“Nested loops” is the term used when one loop is placed inside another as in the
following example:

for(int j = 0; j < 5; j++)
{
 System.out.println(“Outer loop”); //
 for(int k = 0; k < 8; k++)
 {
 System.out.println(“...Inner loop”); //
 }
}

The inner loop iterates eight times for of the five iterations of the outer loop.
Therefore, the code inside the inner loop will execute 40 times.

**

A very common mistake is to put a semicolon immediately after the parenthesis of a -
loop as is illustrated by the following code:

 for (j =3; j <= 79; j++);
 {
 //This block of code is only executed once because of the inappropriately
 //placed semicolon above.
 . . . some code . . .
 }

11-4

In each problem below state what is printed unless directed otherwise.

1. int j = 0;
for (int g = 0; g <5; g++)

j++;
 System.out.println(j);

2. int s = 1;
for (int j = 3; j >= 0; j--)
{
 s = s + j;
}
System.out.println(s);

3. int p = 6;

int m = 20, j;
for (j = 1; j < p; j++); //Notice the semicolon on this line
{
 m = m + j * j;
}
System.out.println(m);

4. double a = 1.0;
for (int j = 0; j < 9; j++)
{
 a*=3;
}
System.out.println(j);

5. for (int iMus = 0; iMus < 10; iMus++)
{
 int b = 19 + iMus;
}

 System.out.println(b);

6. double d = 100.01;
int b = 0;
for (int iMus = 0; iMus < 10; iMus++)
 b = 19 + iMus;
 d++;
System.out.println(d);

7. Write a for-loop that will print the numbers 3, 6, 12, and 24

8. Write a for-loop that will print the numbers 24, 12, 6, 3

11-5
9. int k = 0;

for(int j = 0; j <= 10; j++)
{
 if (j = = 5)
 {
 break;
 }
 else
 {
 k++;
 }
}
System.out.println(k);

10. What is the name of the part of the parenthesis of a for-loop that terminates the loop?

11. What is the value of for each iteration of the following loop?

int i, j;
for(i = 10; i <= 100; i = i+ 10)
 j = i / 2;

12. What is the value of after the following statements have executed?

int r, j;
for (j = 1; j < 10; j = j * 2)
r = 2 * j;

13. What is the worst sin you can commit with a for-loop (or any loop for that matter)?

14. How many times does the following loop iterate?
for (p = 9; p <= 145; p++)
{

}

Write a program that will allow a user to input his name. The prompt and input data would look
something like this:

 Please enter your name. Peter Ustinov

Using a for-loop and the method, produce a printout of the reversal of the
name.

For example, the name would be:

 vonitsu retep

Notice that the printout is in all lower-case. Use the method, to
accomplish this.

11-6

1. What is output?

A. 0
B. 10
C. 15
D. 5
E. None of these

int sum=0;
for (int k=0; k<5; k++) {
 sum+=k;
}
System.out.println(sum);

2. What is output?

A. 66
B. 100
C. 101
D. 99
E. None of these

double kk = 3;
int j = 0;
for(j = 0; j <= 100; j++) {
 kk = kk + Math.pow(j, 2);
 ++kk;
}
System.out.println(j);

3. What is the final value of p?

A. 10
B. 4
C. 5
D. 12
E. None of these

double p = 0;
for(int m =10; m > 6; --m)
{
 if(m= =7) {
 p = p+m;
 }
 else {
 ++p;
 }
}

4. Which of the following will print the set of odd integers starting at 1 and ending at 9?

A. for(int j=0; j<=9; j++) { System.out.println(j); }
B. for(int j=1; j<10; j= j+2) { System.out.println(j); }
C. for(int j=1; j<=9; j+=1) { System.out.println(j); }
D. for(int j=1; j<=9; j+=2) { System.out.println(j); }
E. Both B and D

5. What is output?

A. 4950
B. 101
C. 100
D. Nothing, it’s an endless loop
E. None of these

double x = 0;
for(int b=0; b<101; b++)
{
 x = x + 1;
 b--;
}
System.out.println(x);

6. What is output?

A. 5 6
B. 6 6
C. 5 10
D. 5 5
E. None of these

int p, q=5;
for(p=0; p<5; p++); //notice the semicolon
 q = q+1;
System.out.println(p + “ ” + q);

11-7
7. What is output?

A. 98
B. 3939
C. 109
D. 4039
E. None of these

int j, k;
int count = 0;
for(j=0; j<4; j++)
{
 for(k = 0; k < 10; k++)
 {
 count++;
 }
}
System.out.print(count--);
System.out.println(count);

